
When You are Ready
to

Beyond PYTHON
Frank Seesink, UNC Chapel Hill

First, a message from
our sponsor…

What I picture in my head…

What it ends up looking like…

Actually that’s not quite right. The guy
who made this is clearly more talented.

Who am I?

Frank Seesink
• Senior Network Engineer, UNC Chapel Hill
• Part of network DevOps group
• Involved in network automation for years
• Love languages, both human & computer
• Programming since I was 12 years old
• Formally B.S. in Computer Science with

all coursework for an M.S. in same
• JOAT - databases, OSes, networking,…

db

Story time…

Work environment

Red Hat
OpenShift

Nornir

Story time…

In January 2022, I was in a rut…

Why Go?
• Python’s creator, Guido van Rossum, worked at

Google from 2005-2012.
• For years Google heavily used Python internally and

even offered Python classes to its employees.
• https://developers.google.com/edu/python

• Google had also hired Rob Pike and Ken Thompson of
Bell Labs (UNIX, C) fame. They, along with Robert
Griesemer, created Go.

• In 2013 Guido van Rossum went to work at Dropbox.
(Dropbox was known to use Python.) That seemed
odd.

• In 2014 Google publicly released Kubernetes, which is
written in Go.

The writing was on the wall?

https://developers.google.com/edu/python

Why Go?

“Language of the cloud”

Go (Golang)

https://go.dev/

Go (Golang)

• Learning Go
https://www.linkedin.com/learning/
learning-go

• Go for Python Developers
https://www.linkedin.com/learning/go-for-
python-developers

• https://learnxinyminutes.com/docs/go/

https://www.linkedin.com/learning/learning-go
https://www.linkedin.com/learning/learning-go
https://www.linkedin.com/learning/go-for-python-developers
https://www.linkedin.com/learning/go-for-python-developers

Fyne

https://fyne.io/

GTK

wxWidgets

To Learn a Programming
Language…

1. You need to program in it

2. You need to program in it

3. You need to program in it

4. You need to have a project/goal

Initial Go Test Project

https://github.com/fseesink/mysetup

fyne.io

http://fyne.io

History of Programming
Languages

0/1

1940s Present

History of Programming
Languages

0/1

1940s Present&

History of Programming
Languages

History/Comparison
C Python Go

First appeared 1972 1992 2009

Designed by Dennis Ritchie Guido van Rossum
Robert Griesemer

Rob Pike
Ken Thompson

Typing Static, weak,
manifest, nominal

Duck, dynamic,
strong typing

Inferred, static,
strong, structural,

nominal

Keywords 32 35 25

Features
C Python Go

Built-in
concurrency N/A N/A Go routines

Concurrency via
libraries

fork()

*provides access to
underlying OS

concurrency features

multiprocessing
concurrent.futures

asyncio
⬆

Native multi-core
support N/A N/A

due to GIL ⬆

Memory
Management

malloc()/free()

*developer responsible for
all memory mgmt

Garbage Collection Garbage Collection

Libraries/Modules
C Python Go

Standard Library ✅ ✅ ✅

Package
ecosystem N/A PyPI.org via VCS such as Git

Example package
import

#include <stdio.h> import netmiko import (
 “github.com/
nornir-automation/
gornir/pkg/gornir"
)

Largest library
(e.g., AI/ML, data

analysis)
✅

http://PyPI.org

Python Go
#!/usr/local/bin/python3

print("Hello world")

package main

import "fmt"

func main() {
 fmt.Println("Hello world")
}

$ python3 helloworld.py

or if permissions set, simply

$ helloworld.py

$ go run helloworld.go
 or
$ go run .
to run interactively.

Compile and run executable
with
$ go build .
$ helloworld

Workflow

Python Go
#!/usr/local/bin/python3

print("Hello world")

package main

import "fmt"

func main() {
 fmt.Println("Hello world")
}

$ time python3 helloworld.py
Hello world
python3 helloworld.py 0.02s
user 0.02s system 36% cpu
0.111 total

$ time go run helloworld.go
Hello world
go run helloworld.go 0.14s
user 0.29s system 49% cpu
0.860 total
$ go build helloworld.go
$ time ./helloworld
Hello world
./helloworld 0.00s user 0.00s
system 2% cpu 0.135 total

Time to compile
AND run the

program (when
developing)

Time to run
executable

binary

Workflow Performance

Python Go
#!/usr/local/bin/python3

print("Hello world")

package main

import "fmt"

func main() {
 fmt.Println("Hello world")
}

 46 bytes: helloworld.py
310 MB: Python install (*)

To run a Python script, you
need Python installed.

TOTAL == ~310 MB

(*) v3.11.5 macOS installation
on disk

72 bytes: helloworld.go
238 MB: Go install (*)
1.8 MB: helloworld binary
To run a Go compiled app, you
just need the binary.

TOTAL == 1.8 MB

(*) v1.21.0 macOS installation
on disk

Final Program Size

C version

TOTAL == 32 KB

or 0.032 MB

Python Go

import os

def itsvalid():
 print("Valid day of the month")
 cwd = os.getcwd()
 print(cwd)

def main():
 # Variable assignment
 name = "Frank"
 day = 19

 if day >= 1 and day < 31:
 itsvalid()

if __name__ == "__main__":
 main()

package main

import (
 "fmt"
 "os"
)

func itsvalid() {
 fmt.Println("Valid day of the month")
 cwd, _ := os.Getwd()
 fmt.Println(cwd)
}

func main() {
 // Variable assignment
 name := "Frank"
 day := 19

 if day >= 1 && day < 31 {
 itsvalid()
 }

 fmt.Println(name)
}

Language Similarities

Global Interpreter
Lock (GIL)

GIL
“In CPython, the global interpreter lock, or GIL, is a
mutex that protects access to Python objects,
preventing multiple threads from executing Python
bytecodes at once. The GIL prevents race conditions
and ensures thread safety. A nice explanation of how
the Python GIL helps in these areas can be found here.
In short, this mutex is necessary mainly because
CPython's memory management is not thread-safe.”

- https://wiki.python.org/moin/GlobalInterpreterLock

Python’s Lack of
Concurrency

1990s 2000s

100%

50%

25%

6.25%

3.125%

== CPU core

== Python

To bypass the GIL
To use multiple threads/cores, you must take action. This
requires extra effort.

For example,
• multiprocessing or concurrent.futures module in

Python standard library. (You must use processes and
not threads in latter. Otherwise it stays within a single
core.)

• Use modules like Nornir (which use concurrent
futures)

asyncio does NOT help here. That is cooperative multi-
threading. Again, single core.

https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/concurrent.futures.html

Disclaimer

Network Automation tends to be
I/O-bound vs. CPU-bound

Possible Python Future

PEP 703 – Making the Global Interpreter Lock
Optional in CPython

CPython’s global interpreter lock (“GIL”) prevents
multiple threads from executing Python code at the
same time. The GIL is an obstacle to using multi-core
CPUs from Python efficiently. This PEP proposes adding
a build configuration (--disable-gil) to CPython to let it
run Python code without the global interpreter lock and
with the necessary changes needed to make the
interpreter thread-safe.

https://peps.python.org/pep-0703/

Go routines

1. Put ‘go’ in front of a function call.
2. …
3. Profit!

Main routine waits for function Main routine keeps going
func main() {
 // Variable assignment
…
 dosomething()
…
}

func main() {
 // Variable assignment
…
 go dosomething()
…
}

Go routines
1990s 2000s

100%

100%

100%

100%

100%

== CPU core

== Go routines

Dependency Hell

Dependency Hell

Program 1

Module X
v1

Program 2 Module X
v2

Dependency Hell

Program 1

Module X
v1

Program 2 Module X
v2

site-packages

Dependency Hell (cont.)

Program

Netmiko

Nornir

site-packages

When you first learn
Python, it’s like this

https://xkcd.com/353/

Eventually, it becomes
this…

https://xkcd.com/1987/

What about Python’s
ability to run on

different platforms?

Go Cross-Compilation

Go Cross-Compilation

• Go creates binary executables specific to an OS/
architecture (e.g., x64 Windows, ARM64 Linux)

• Go can cross-compile to ANY supported OS/
architecture combination FROM any supported
OS/architecture. Simply set GOOS and GOARCH
environment variables.

$ GOOS=linux GOARCH=arm64 go build .

So when should you
use Go?

It Depends.

What makes Go worth
considering

• Pythonic code (relatively easy transition)
• Go routines / native multi-core support
• Single binary executable with NO

EXTERNAL DEPENDENCIES
• Can compile to any supported architecture/

OS from a single platform
• Performant: best balance between coding

speed and execution speed
• BONUS: Fyne is a nice, cross-platform GUI

framework

Thank You

https://frank.seesink.com/presentations/
Internet2TechEx-Fall2023/

Frank Seesink
frank@seesink.com

frank@unc.edu

https://frank.seesink.com/presentations/Internet2TechEx-Fall2023/
https://frank.seesink.com/presentations/Internet2TechEx-Fall2023/
mailto:frank@seesink.com

